

REPORT OF PERFORMANCE

1080-15

OBJECT

Three-core heat-shrinkable indoor termination

TYPE

GTM -IXAS- 1233H3A (GXE -13)

6,35/11 (12) kV - 3x185 mm² - AI - XLPE

CLIENT

Gala Shrink Fit, Mumbai, India Gala Shrink Fit,

MANUFACTURER

Gala Shrink Fi Mumbai, India

TESTED BY

KEMA Nederland B.V. Arnhem, The Netherlands

DATE OF TESTS

12 August 2014 to 10 February 2015

TEST SPECIFICATION

The programme was based on

IEC 60502-4 (2010), test sequence 1.1, 1.2, and 1.4.

SUMMARY AND CONCLUSION

The indoor termination passed the electrical and non-electrical tests. During the examination of the indoor terminations after the humidity test, loss of dielectric quality due to tracking erosion and some splitting of the

material was found on the break-out.

This report applies only to the object tested. The responsibility for conformity of any object having the same type references as that tested rests with the manufacturer.

This report consists of 68 pages in total.

Copyright: Only integral reproduction of this report is permitted without written permission from KEMA. Electronic copies in e.g. PDF-format or scanned version of this report may be available and have the status "for information only". The sealed and bound version of the report is the only valid version.

KEMA Nederland B.

S.A.M. Verhoeven

Director Testing, Inspections & Certification The Netherlands

Arnhem, 6 May 2015

CON.	TENTS	page
1	Identification of the object tested	
1.1	Ratings/characteristics of the object tested and proved by tests	4
1.2	Characteristics of the indoor termination for cables with extruded insulation	
1.3	Characteristics of the test cable	4
1.4	List of drawings	
2	General information	
2.1	The tests were witnessed by	٥
2.2	The tests were carried out by	غ غ
2.3	Measurement uncertainty	C
	*	b
3	Test sequence 1.1 for indoor termination (two terminations)	
3.1	Test arrangement	
3.1.1	Determination of the cable conductor temperature.	9
3.2	Photograph of test set-up.	40
	-	10
4	Test sequence 1.1	11
4.1	DC voltage dry	44
4.2	AC voltage dry	11
4.3	Partial discharge at ambient temperature	12
4.4	Impulse voltage at elevated temperature	14
4.5	Heating cycle voltage in air	14
4.6	Partial discharge at elevated and ambient temperature	22
4.6.1	Partial discharge at elevated temperature	23
4.6.2	Partial discharge at ambient temperature	23
4.7	Impulse voltage at ambient temperature	24
4.8	AC voltage dry	25
4.9	Examination	33
4.9.1	Photographs	34
		35
5	Test sequence 1.2 for indoor termination (one termination)	37
5.1	Test arrangement	37
5.1.1	Determination of the cable conductor temperature	
5.2	DC voltage dry	3/
5.3	AC voltage dry	30
5.4	Thermal short circuit test (screen)	40
5.5	Thermal short circuit test (conductor)	40
5.6	Test results and oscillograms	45
5.7	Condition / inspection after test	43
5.8	Impulse voltage at ambient temperature	4/
5.9	AC voltage dry	50
5.10	Examination	56
5.10.1	Photographs	59

1080-15

6	Test sequence 1.4 (one indoor termination)	62
6.1	Humidity	62
6.1.1	Photographs	
7	Drawing	67
8	Measurement uncertainty	68

-3-

1 IDENTIFICATION OF THE OBJECT TESTED

1.1 Ratings/characteristics of the object tested and proved by tests

Rated voltage, U_o/U (U_m)

6,35/11 (12) kV

Rated maximum conductor temperature in normal operation

90 °C

Rated conductor cross-section

- ---

Thermal short-circuit current

3x185 mm² 22,5 kA

1.2 Characteristics of the indoor termination for cables with extruded insulation

Manufacturer

Gala Shrink Fit

Туре

heat-shrinkable indoor termination

Type designation, reference number

GTM -IXAS- 1233H3A, (GXE -13)

Year of manufacture

2014

Rated voltage, U₀/U (U_m)

6,35/11 (12) kV

No. of cores

3

Dynamic short-circuit current Creepage distance (minimum)

not applicable

Flashover distance (minimum)

450 mm 20 mm

Number of sheds

0

Material of insulating body

heat-shrinkable cross linked polyolefin anti-tracking

material

Type of stress control

stress control mastic

1.3 Characteristics of the test cable

Note: the cable is not part of the type test.

Manufacturer (as stated by the client)

Apar Industries Limited,

India

Type

U₀ = 6 kV 3x185 mm² AI/XLPE/CTS/PVC/SWA/PVC

(A2XCEWY) CABLE

7

Manufacturing year Rated voltage, U₀/U (U_m)

2014

No. of cores

6/10 (12) kV

Core identification

core 1 = red core 2 = yellow

core 3 = blue

Marking on the oversheath

AIL/UNIT: UNIFLEX CABLES- INDIA 'UNICAB'

6/10 (12) KV XLPE CABLE '3X185 Sq.mm 2014

Construction

see List of drawings

.Conductor

material

cross-section

- nominal diameter

type

 maximum conductor temperature in normal operation

 presence and nature of measures to achieve longitudinal watertightness aluminium 185 mm² 16.2 mm

stranded circular compacted

90 °C

no

Conductor screen

material

- nominal thickness

material designation

manufacturer of the material

extruded semi-conducting

0,6 mm

extruded semi-conducting compound

Hanwha and Sakun Polymer

Insulation

- material

- nominal thickness

XLPE

3,4 mm

Insulation (core) screen

material

strippable

- nominal thickness

extruded semi-conducting compound

yes

0,5 mm

Metal screen

material

type

nominal thickness and width of tape
 nominal thickness and width of tape

cross-sectional area

two annealed plain copper tape

helical

0,03 x 40 mm (overlap 10%) 2 x 40 mm (overlap 10%)

27,6 mm2 three cores together

Inner coverings and fillers

- material

yes

Separation sheath

material

nominal thickness

manufacturer of the material

PVC, type ST₂

1,6 mm

Gala Shrink Fit, Mumbai, India

Metal armour

material

- number of wires

nominal diameter of wires
 cross-sectional area

galvanised steel round wires

68

2,5 mm

333,8 mm²

Metal foil or tape, longitudinally applied, bonded to the oversheath

.Oversheath

- material

nominal thickness

nominal overall diameter of the cable
 (D)

material designation

manufacturer of the material

- colour

PVC, type ST₂ 3,3 mm 72,0 mm

PVC, type ST2

Gala Shrink Fit, Mumbai, India

black

Manufacturing details insulation system

location of manufacturing

type of extrusion line

type of extrusion

- curing means

-, cooling means

manufacturing length (where cable sample for testing has been taken from)

Umbergaon, India

CCV

triple common extrusion

dry

dry

100 m

1.4 List of drawings

The manufacturer has guaranteed that the object submitted for tests has been manufactured in accordance with the following drawing and documents. KEMA has verified that these drawing and documents adequately represent the object tested. The manufacturer is responsible for the correctness of these drawing and documents and the technical data presented.

Revision/date

The following drawing and documents have been included in this Report:

Drawing No./document No.

Revision

GTSPL/K02/06/14

00

The following document is only listed for reference and is kept in KEMA's files:

Document no.

Components list GTM/OXAS/1233A
Indoor termination GTM/XAS/31115

1080-15

2 GENERAL INFORMATION

2.1 The tests were witnessed by

Name

Mr Gurubax Singh

12 August to 15 August 2014

Company

Gala Shrink Fit,

Mumbai, India

2.2 The tests were carried out by

Name

Ms H. He

Mr A. Sengers

Mr T. Ariaans

Mr E. Pultrum

Mr D. Bouchier

Mr N. Dobbe

Mr K. Linden

Company

KEMA Nederland B.V.,

Arnhem, The Netherlands

2.3 Measurement uncertainty

A table with measurement uncertainties is enclosed in this report. Unless otherwise stated, the measurement uncertainties of the results presented in this report are as indicated in that table.

3 TEST SEQUENCE 1.1 FOR INDOOR TERMINATION (TWO TERMINATIONS)

- 3.1 Test arrangement
- 3.1.1 Determination of the cable conductor temperature

Standard

Standard

IEC 60840, Annex A, Subclause A.3.1 was used as a guide

For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the main loop in order to create the same environmental conditions as for the test loop.

The heating currents in both the reference loop and the test loop were kept equal at all times, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. IEC 60840, Annex A was used as a guide and IEC 60840, Subclause A.3.1, method 1 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated temperature limits for at least 2 hours. The test set-up was consisting of a joint as part of a cable system, also incorporating two outdoor terminations which are not part of the type test objects. The test set-up of two separate main test loops connected in series.

Sample 1 and 2 for test sequence 1.1

4 TEST SEQUENCE 1.1

4.1 DC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

21 °C

Testing arrangement	Voltage applied, DC		Duration		
Voltage applied to Earth connected		x U ₀	(kV)	(min)	
Conductor 1,2 and 3 of test loop 1	Metal screens	6	38	15	
Conductor 1,2 and 3 of test loop 2	Metal screens	6	38	15	

Note

On request of the client the test has been performed more severely at 6 x U_0 instead of 4 x U_0 .

Requirement

No breakdown or flashover shall occur.

Result

4.2 AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

22 °C

Testing arrangement Voltage applied to Earth connected to		Voltage applied, 50 Hz		Duration
		x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 1	Metal screens	4,5	28,5	5
Conductor 1,2 and 3 of test loop 2	Metal screens	4,5	28,5	5

Requirement

No breakdown or flashover shall occur.

Result

4.3 Partial discharge at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 2

Test date

13 August 2014

Environmental conditions

Ambient temperature

22 °C

.Characteristic test data

Temperature of test object	22 °C
Circuit	direct
Calibration	5 pC
Noise level at 1,73 U ₀	2,5 pC
Declared sensitivity	5 pC
Required sensitivity	≤ 5 pC
Centre frequency	117,5 kHz
Bandwidth (∆f)	100 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Core	Voltage app	olied, 50 Hz	Duration	Partial discharge level
	x U ₀	(kV)	(s)	(pC)
1 of test loop 1	2	12,5	10	-
	1,73	11	-	Not detectable
2 of test loop 1	2	12,5	10	н
	1,73	11	1	Not detectable
3 of test loop 1	2	12,5	10	
	1,73	11		Not detectable
1 of test loop 2	2	12,5	10	
	1,73	11		Not detectable
2 of test loop 2	2	12,5	10	-
	1,73	11	-	Not detectable
3 of test loop 2	2	12,5	10	
	1,73	11		Not detectable

Requirement

The maximum partial discharge level from the test object at 1,73 U₀ shall not exceed 10 pC.

Result

4.4 Impulse voltage at elevated temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 3

Test date

26 August 2014

Environmental conditions

Ambient temperature

21 °C

Characteristic test data

Temperature of test object

97 °C

Specified test voltage

95 kV

Testing arrangement		Polarity	Voltage applied	No. of impulses	See figure on next pages	
Voltage applied to	Earthed		(% of test voltage)	Impaises	next pages	
Conductor 1	Metal screens	Positive	50	1	1 (waveshape)	
test loop 1 and 2	and conductor		65	1	2	
	2 and 3		80	1	2	
			100	10	3 and 4	
Conductor 1	Metal screens	Negative	50	1	5 (waveshape)	
test loop 1 and 2	and conductor		65	1	6	
	2 and 3		80	1	6	
			100	10	7 and 8	
Conductor 2	Metal screens and conductor 1 and 3	Positive	50	1	9 (waveshape)	
test loop 1 and 2			65	1	10	
			80	1	10	
			100	10	11 and 12	
Conductor 2	Metal screens and conductor 1 and 3	Negative	50	1	13(waveshape)	
test loop 1 and 2			65	1	14	
			80	1	14	
			100	10	15 and 16	
Conductor 3	Metal screens	Positive	50	1	17 (waveshape)	
test loop 1 and 2	and conductor		65	1	18 .	
	1 and 2		80	1	18	
			100	10	19 and 20	
Conductor 3	Metal screens	Negative	50	1	21 (waveshape)	
test loop 1 and 2	and conductor		65	1	22	
	1 and 2		80	1	22	
			100	10	23 and 24	

Note

On request of the client the applied LI voltage was 95 kV instead of 75 kV.

-15-

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

4.5 Heating cycle voltage in air

Standard and date

Standard

IEC 60502-4, Table 5, test number 4

Test dates

28 August to 9 October 2014

.Environmental conditions

Ambient temperature

20-22 °C

.Characteristic test data

Heating method

conductor current

Stabilized temperature

97 °C

No. of	Required	Heating	Heating cycle			Voltage	
heating	steady current during		Heating		Cooling		
cycles	conductor temperature (°C)	steady condition (A)	Total duration (h)	Duration of conductor at steady temperature (h)	Total duration (h)	Total duration	Voltage applied 2,5 U ₀ (kV)
126	95-100	approx. 409	5	2	4	9	16

Note

On request of the client the applied number of heating cycles was 126 instead of 60.

Requirement

No breakdown shall occur.

Result

4.6 Partial discharge at elevated and ambient temperature

4.6.1 Partial discharge at elevated temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 6

Test date

11 November 2014

Environmental conditions

Ambient temperature

20 °C

Characteristic test data

Temperature of test object	97 °C
Circuit	direc
Calibration	5 pC
Noise level at 1,73 U ₀	2 pC
Declared sensitivity	4 pC
Required sensitivity	≤ 5 pC
Centre frequency	98 kHz
Bandwidth (Δf)	100 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Core	Voltage applied, 50 Hz		Duration	Partial discharge level	
	x U ₀ (kV)		(s)	(pC)	
1 of test loop 1 and 2	2	12,5	10	-	
Seadles .	1,73	11		Not detectable	
2 of test loop 1 and 2	2	12,5	10		
	1,73	11		Not detectable	
3 of test loop 1 and 2	2	12,5	10		
	1,73	11	- Ulaismie	Not detectable	

Requirement

The maximum partial discharge level from the test object at 1,73 U_0 shall not exceed 10 pC.

Result

4.6.2 Partial discharge at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 6

Test date

13 November 2014

Environmental conditions

Ambient temperature

20 °C

.Characteristic test data

Temperature of test object	20 °C
Circuit	direct
Calibration	5 pC
Noise level at 1,73 U ₀	2,5 pC
Declared sensitivity	5 pC
Required sensitivity	≤ 5 pC
Centre frequency	124,5 kHz
Bandwidth (∆f)	100 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF
and the same of th	

Core	Voltage ap	Voltage applied, 50 Hz		Partial discharge level	
	x U ₀	(kV)	(s)	(pC)	
1 of test loop 1 and 2	2	12,5	10	-	
	1,73	11		Not detectable	
2 of test loop 1 and 2	2	12,5	10	-	
	1,73	11	-	Not detectable	
3 of test loop 1 and 2	2	12,5	10	-	
	1,73	11		Not detectable	

Requirement

The maximum partial discharge level from the test object at 1,73 $\,\mathrm{U}_0$ shall not exceed 10 pC.

Result

4.7 Impulse voltage at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 10

Test date

14 November 2014

Environmental conditions

Ambient temperature

20 °C

.Characteristic test data

Temperature of test object

20 °C

Specified test voltage

95 kV

Testing arrangement		gement Polarity Voltage applied		No. of impulses	See figure on next pages	
Voltage applied to	Earthed		(% of test voltage)		The state of the s	
Conductor 1 of	conductor 1 of Metal screens		50	1	1 (waveshape)	
test loop 1 and 2 and co	and conductor	65	1	2		
	2 and 3		80		2	
			100	10	3 and 4	
Conductor 1 of	Metal screens	Negative	50	1	5 (waveshape)	
test loop 1 and 2	and conductor		65	1	6	
	2 and 3		80	1	6	
			100	10	7 and 8	
Conductor 2 of test loop 1 and 2	Metal screens and conductor 1 and 3	Positive	50	1	9 (waveshape)	
			65	1	10	
			80	1	10	
			100	10	11 and 12	
Conductor 2 of	Metal screens and conductor 1 and 3	Negative	50	1	13 (waveshape)	
test loop 1 and 2			65	1	14	
			80	1	14	
			100	10	15 and 16	
Conductor 3 of	Metal screens	nd conductor	50	1	17(waveshape)	
test loop 1 and 2	and conductor		65	1	18	
	1 and 2		80	1	18	
			100	10	19 and 20	
Conductor 3 of	Metal screens	Negative	50	1	21 (waveshape)	
test loop 1 and 2	and conductor		65	1	22	
	1 and 2		80	1	22	
	4.	Latter 1	100	10	23 and 24	

Note

On request of the client the applied LI voltage was 95 kV instead of 75 kV.

-26- 1080-15

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

4.8 AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 11

Test date

17 November 2014

Environmental conditions

Ambient temperature

20 °C

Temperature of test object

20 °C

Testing arrangement		Voltage applied, 50 Hz		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 1 and 2	Metal screens	2,5	16	15

Requirement

No breakdown or flashover shall occur.

Result

4.9 Examination

Standard and date

Standard

IEC 60502-4, Table 5, test number 14

Test date

1 December 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

21 °C

Test loop	Observations ¹⁾
1 and 2	None of the following has been detected:
	- cracking in the filling media and/or tape or tube components
	- a moisture path across a primary seal
	- corrosion and/or tracking and/or erosion
	- leakage of any insulating material

Result

The results are for information only.

5 TEST SEQUENCE 1.2 FOR INDOOR TERMINATION (ONE TERMINATION)

- 5.1 Test arrangement
- 5.1.1 Determination of the cable conductor temperature

Standard

Standard

IEC 60840, Annex A, Subclause A.3.1 was used as a guide

For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the main loop in order to create the same environmental conditions as for the test loop.

The heating currents in both the reference loop and the test loop were kept equal at all times, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. IEC 60840, Annex A was used as a guide and IEC 60840, Subclause A.3.1, method 1 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated temperature limits for at least 2 hours. The test set-up was consisting of a joint as part of a cable system, also incorporating a heat shrinkable outdoor termination and a heat shrinkable indoor termination.

Sample 3 for test sequence 1.2

5.2 DC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

22 °C

.Testing arrangement		Voltage applied, DC		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 3	Metal screens	6	38	15

Note

On request of the client the test has been performed more severely at 6 x U_0 instead of 4 x U_0 .

Requirement

No breakdown or flashover shall occur.

Result

5.3 AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

22 °C

Testing arrangement		Voltage applied, 50 Hz		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 3	Metal screens	4,5	28,5	5

Requirement

No breakdown or flashover shall occur.

Result

5.4 Thermal short circuit test (screen)

Standard and date

Standard

IEC 60502-4, Table 5, test number 7

Test date

9 January 2015

Environmental conditions

Ambient temperature

22 °C

Characteristic test data

Stabilized conductor temperature

97 °C

Conductor heating		
Required conductor temperature θ (°C)	Applied 3-phase heating current (A)	Conductor stable at 97 °C before short-circuit application (h)
95 ≤ θ ≤ 100	530	2

Short-circuit application on screen (see figures on the next pages)				
Specified short-circuit current (kA)	Frequency (Hz)	Duration (s)	Number of short- circuit applications	
	(П2)	(5)		
2,5	50	1	2	

Procedure

The conductor temperature shall be maintained within the stated temperature limits for at least 2 h before carrying out the short-circuit test. Between the two short-circuit applications, the cable screen shall be allowed to cool down to a temperature less than 10 K above its temperature prior to the first short-circuit application.

Requirement

No visible deterioration may occur.

Result

Thermal short circuit test (conductor) 5.5

Standard and date

Standard

IEC 60502-4, Table 5, test number 8

Test date

28 January 2015

Environmental conditions

Ambient temperature

11 °C

Characteristic test data

Characteristic test data		
Conductor material Cross section conductor	185	Aluminum mm²
Maximum short circuit conductor	250	°C
temperature		
First short circuit application		
Start temperature of test object	13,5	°C
(measured value)		
Selected duration of short circuit current	1	S
Calculated short circuit current	22,5	kA
Thermal current, three phase	22,7	kA
Duration	1,06	s
Second short circuit application		
Start temperature of test object	13,5	°C
(measured value)		
Selected duration of short circuit	1	s
current		
Calculated short circuit current	22,5	kA
Thermal current, three phase	22,7	kA

Procedure

Duration

Two short-circuits shall be applied to raise the conductor temperature to the maximum permissible short-circuit temperature of the cable within 5 s. Between the two short-circuits, the test loop shall be allowed to cool to a temperature less than 10 K above its temperature prior to the first short-circuit.

1,05 s

Test circuit S01

G = Generator TO = Test Object U = Voltage Measurement to earth
MB = Master Breaker L = Reactor I = Current Measurement

MS = Make Switch

PT = Power Transformer

Supply		
Power	MVA	47,2
Frequency	Hz	50
Phase(s)		3
Voltage	kV	2,2
Current	kA	22
Impedance	Ω	0,033
Power factor		< 0,1
Neutral		Not earthed

Load	
Short-circuit point	Earthed

5.6 Test results and oscillograms

Thermal short-circuit test

60 mg

Test number: 150128-6005	5			
Phase		-	-	-
Peak value of current	kA	-42,6	38,7	38,1
Symmetrical current, beginning	kA	23,0	23,5	23,3
Symmetrical current, middle	kA	22,7	23,1	22,8
Symmetrical current, end	kA	22,5	22,9	22,7
Symmetrical current, average	kA	22,8	23,3	22,1
Average current, three phase	kA		22,7	-
Current duration	s	1,05	1,05	1,05
Thermal equivalent		22.5 k	A durino	1.06

Ambient temperature	13,5 °C	
		-

Remarks:			

Thermal short-circuit test

		6006
U1TO 1. 25kV pu—— I 1TO 66. 7kA pu——	- ************************************	1
L/2TO 1. 25kV pu————————————————————————————————————		J
U3TO 1. 25kV pu		
uni t		1.8

Test number: 150128-6006

Phase				
Peak value of current	kA	-42,3	38,6	37,9
Symmetrical current, beginning	kA	23,0	23,4	23,2
Symmetrical current, middle	kA	22,6	23,0	22,7
Symmetrical current, end	kA	22,5	22,9	22,6
Symmetrical current, average	kA	22,8	23,2	22,0
Average current, three phase	kA		22,7	
Current duration	s	1,05	1,05	1,05
Thermal equivalent		22,5 kA during 1,10		1,10 s

Ambient temperature	13,5 °C	

Remarks:

Condition / inspection after test

Requirement
No visible deterioration may occur.

Result

No visible change. No visible damage. The object passed the test.

5.8 Impulse voltage at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 10

Test date

29 January 2015

Environmental conditions

Ambient temperature

20 °C

.Characteristic test data

Temperature of test object

20 °C

Specified test voltage 95 kV

Testing arrangement		Polarity Voltage applied		No. of impulses	See figure on next pages	
Voltage applied to	Earthed		(% of test voltage)			
Conductor 1	Metal screens	Positive	50	1	1 (waveshape)	
test loop 3	and conductor		65	1	2	
	2 and 3		80	1	2	
			100	10	3 and 4	
Conductor 1	Metal screens Negative		50	1	5 (waveshape)	
test loop 3	and conductor		65	1	6	
	2 and 3		80	1	6	
			100	10	7 and 8	
Conductor 2 Metal screens		Positive	50	1	9 (waveshape)	
test loop 3	and conductor		65	1	10	
			80	1	10	
			100	10	11 and 12	
Conductor 2	Metal screens	Negative	50	1	13 (waveshape)	
test loop 3	and conductor		65	1	14	
	1 and 3		80	1	14	
			100	10	15 and 16	
Conductor 3	Metal screens	Positive	50	1	17(waveshape)	
test loop 3	and conductor		65	1	18	
	1 and 2		80	1	18	
			100	10	19 and 20	
Conductor 3	Metal screens	Negative	50	1	21 (waveshape)	
test loop 3	and conductor		65	1	22	
	1 and 2		80	1	22	
			100	10	23 and 24	

Note

On request of the client the applied LI voltage was 95 kV instead of 75 kV

-51- 1080-15

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

5.9 AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 11

Test date

29 January 2015

Environmental conditions

Ambient temperature

20 °C

Temperature of test object

20 °C

Testing arrangement		Voltage applied, 50 Hz		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 3	Metal screens	2,5	16	15

Requirement

No breakdown or flashover shall occur.

Result

-59-

5.10 Examination

Standard and date

Standard

IEC 60502-4, Table 5, test number 14

Test date

5 February 2015

Environmental conditions

Ambient temperature

20 °C

Temperature of test object

20 °C

Test loop	Observations ¹⁾
3.	None of the following has been detected:
	- cracking in the filling media and/or tape or tube components
	- a moisture path across a primary seal
	- corrosion and/or tracking and/or erosion
	- leakage of any insulating material

Result

The results are for information only.

6 TEST SEQUENCE 1.4 (ONE INDOOR TERMINATION)

6.1 Humidity

Standard and date

Standard

IEC 60502-4, Table 5, test number 12

Test dates

28 January to 9 February 2015

Environmental conditions

Ambient temperature

20-22 °C

Temperature of test object

20-22 °C

Characteristic test data

Leakage current protection (I_{max})

1 ± 0,1 A

Conductivity

70 ± 10 mS/m

Rate of flow

 0.4 ± 1 $I/h/m^3$

Testing arrangement		Applied Voltage, 50 Hz		Duration	
Voltage applied to conductor	Earth connected to	x U ₀	(kV)	(h)	
1, 2 and 3	Metallic screen	1,25	8	300	

Requirement

No breakdown or flashover, no more than 3 trips, no substantial damage of the insulation shall occur.

Result

There was no breakdown or flashover, no trips.

After the humidity test, on two of the three phases loss of dielectric quality occurred due to tracking, erosion and some splitting of material on the break-out.

-66-

6.2 Examination

Standard and date

Standard

IEC 60502-4, Table 5, test number 14

Test date

10 February 2015

Environmental conditions

Ambient temperature

20 °C

Characteristic test data

Temperature of test object

20 °C

object	observations	
test loop 4	None of the following has been detected:	
	- cracking in the filling media and/or tape or tube components	
	- a moisture path across a primary seal	
- corrosion and/or tracking and/or erosion		
	- leakage of any insulating material	

Result

For information only.

7 DRAWING

8 MEASUREMENT UNCERTAINTY

The measurement uncertainties in the results presented are as specified below unless otherwise indicated.

Measurement	Measurement uncertainty
Dielectric tests and impulse current tests:	
- peak value	≤ 3%
- time parameters	≤ 10%
Capacitance measurement	0,3%
Tan δ measurement	± 0,5% ± 5 × 10 ⁻⁵
Partial discharge measurement:	
- <10 pC	2 pC
-' 10 to 100 pC	5 pC
- > 100 pC	20%
Measurement of impedance AC-resistance measurement	≤ 1%
Measurement of losses	≤ 1%
Measurement of insulation resistance	≤ 10%
Measurement of DC resistance:	
– 1 to 5 μΩ	1%
– 5 to 10 μΩ	0,5%
– 10 to 200 μΩ	0,2%
Radio interference test	2 dB
Calibration of current transformers	2,2 x 10 ⁻⁴ l _i /l _u and 290 µrad
Calibration of voltage transformers	1,6 x 10 ⁻⁴ U/U _u and 510 µrad
Measurement of conductivity	5%
Measurement of temperature:	
50 to -40 °C	3 K
-40 to125 °C	2 K
- 125 to 150 °C	3 K
Tensile test	1%
Sound level measurement	type 1 meter as per IEC 60651 and ANSI S1,4,1971
Measurement of voltage ratio	0,1%